Some equations that can be used for x(t) and y(t) for moving objects with or without drag.
F = m * a
f
a = ---
m
f
y''(t) = ---
m
If f is constant, then:
2
F*t
y(t) = (c_2*t) + c_1 + -----
(2*m)
and
F*t
y'(t): c_2 + ---
m
y (0) = x0
y'(0) = v0
c_1 = x0
c_2 = v0
Now let's say we have const f plus some drag(k) depending on y'(y).
f + k* y'(t)
y''(t) = ------------
m
Then
k*t
c_1*m*(e^---)
m f*t
y(t) ------------- + c_2 - ---
k k
k*t f
y'(t)= (c_1*(e^---)) - -
m k
y (0) = x0
y'(0) = v0
f
c_1 = - + v0
k
c_1*m
c_2 = x0 - ------
k
Drag (k different than 0)
y(t) = (c_1*m e^((k*t)/m))/k+c_2-(f*t)/k
y'(t) = c_1*e^((k*t)/m)-f/k
c_1 = f/k + v0
c_2 = x0 - c_1*m/k
No drag (k = 0)
y(t) = x0 + v0*t + f*t^2/2*m
y'(t) = v0 + f/m * t